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Abstract

An inverse conduction–radiation problem for simultaneous estimation of the conduction–radiation parameter, the optical thickness
and the boundary emissivity from a knowledge of the measured temperature profile for combined conduction and radiation in a plane
parallel participating medium is presented. A finite volume method is used to solve the ‘‘forward” problem, wherein the temperature
profile is determined by a solution of the governing equation for a given set of parameters. The inverse problem is treated as an opti-
mization problem, wherein, we minimize the sum of square of residuals between the measured and estimated temperatures. Genetic algo-
rithms are used for the search. The effects of ‘‘measurement” errors on the estimated parameters, which are introduced through a random
perturbation, are investigated.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Inverse problems in a participating medium are impor-
tant in the field of heat transfer. Inverse analyses provide
a great advantage where direct measurement of desired
quantities is not possible for several reasons. Inverse com-
bined conduction–radiation problems are important in
fibrous insulation, glass manufacture and in many other
applications. General inverse combined conduction–radia-
tion problems in a participating medium deal with the esti-
mation of optical thickness and conduction–radiation
parameter. Li [1] presented results for an inverse conduc-
tion–radiation problem wherein a simultaneous estimation
of single scattering albedo, the optical thickness, the con-
duction–radiation parameter and the scattering phase func-
tion from a knowledge of exit radiation intensities was
carried out. The problem was solved by using the conjugate
gradient method to minimize the error between the calcu-
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lated exit intensities and the experimental data. Manicka-
vasagam and Menguc [2] employed the Levenberg–
Marquardt method to estimate the optical thickness and
radiation–conduction parameter of a one-dimensional
plane parallel medium from the input temperature data
measured inside the medium. Ruperti et al. [3] studied the
inverse problem for estimating surface temperatures and
fluxes from simulated temperatures measured within a
semitransparent slab. A space marching technique was
adopted to solve the inverse conduction–radiation
problem.

Genetic algorithms (GA) are new to thermal engineering
problems. The probability of finding the global optimum
using GA is expected to be high for inverse problems.
Genetic algorithms are computerized search and optimiza-
tion algorithms based on the mechanics of natural selec-
tion. GA mimics the principle of survival of the fittest
nature to make a search process. Li and Yang [4] solved
an inverse radiation problem for the estimation of single
scattering albedo, the optical thickness and the phase func-
tions from the knowledge of the exit radiation intensities
using GA. Kim, Baek and Ryou [5] presented an inverse
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Nomenclature

As surface area of the control volume, m2

F, f functions
I radiation intensity, W m�2 sr�1

k thermal conductivity, W m�1 K�1

L distance between two parallel plates, m
~n unit vector normal to d As

M number of directions
N number of control volumes
NCR conduction–radiation parameter, kj=4rT 3

H

q00 local heat flux, W m�2

q* dimensionless heat flux for radiative equilib-
rium, q00=rðT 4

H � T 4
CÞ

R residual temperature function or objective func-
tion, K2

~s unit vector along s direction
S distance between interpolation point uf and inte-

gration point f, m
T absolute temperature, K
z z axis
Z dimensionless length, z/L

Greek symbols

e hemispherical, total emissivity of the surface
c polar angle, radian
j absorption coefficient, m�1

x solid angle, steradian (sr)

/ azimuthal angle, radian
wc dimensionless conductive heat flux,

q00c
rT 4

H

wt dimensionless total heat flux, q00c
rT 4

H

þ q00r
rT 4

H

r Stefan–Boltzmann constant, 5.67 � 10�8,
W m�2 K�4

s dimensionless optical thickness, jL

sz dimensionless optical thickness at any distance
z, jz

h dimensionless temperature, T/TH

Subscripts

a average
b black body
c conductive
C cold surface
n, s north and south face of control volume
N, S north and south nodes
f integration point
H hot surface
r radiative
t sum of conduction and radiation
uf interpolation point

Superscript

l corresponding to solid angle

L

Bottom plate TH

k ,κ

Top plate TC

z

ε

ε

Fig. 1. Schematic of parallel plate enclosure with bottom wall heated and
top wall cooled.
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analysis for estimating the wall emissivities for an absorb-
ing emitting and scattering medium in a two-dimensional
irregular geometry with diffusing emitting and reflecting
opaque boundaries from the measured temperature. The
finite volume method was used employed to solve the radi-
ative transfer equation for a two-dimensional irregular
geometry. A hybrid genetic algorithm that contains a local
optimization algorithm was adopted to estimate wall emis-
sivities by minimizing an objective function.

The inverse problem considered in this paper concerns
the estimation of the conduction–radiation parameter, the
optical thickness and boundary emissivity for a emitting
and absorbing medium enclosed between two parallel, iso-
thermal, infinitely long and diffuse plates. The inverse
problem is formulated as the minimization of least square
residual function between the measured and estimated tem-
perature profiles and is solved by using GA.
2. Physical model

Fig. 1 shows the schematic of the geometry considered
for the present study. The heated bottom wall is at a spec-
ified temperature TH and the top wall is at TC, and
TH > TC. The numerical values of TH and TC in this study
are 600 and 300 K, respectively. The walls are diffuse and
gray and have the same emissivity e. The medium enclosed
by the two parallel plates is absorbing, emitting but non-
scattering, with uniform conduction and radiation proper-
ties. The medium is assumed to be gray and stationary,
thereby tacitly implying that convection is ignored. Steady
state conduction takes place in the enclosure. The one-
dimensional medium is divided into Nz control volumes
of length Dz in the z-direction, as shown in Fig. 2a. The
solid angle of 4p is subdivided into conical solid angle ele-
ments (c�, c+) as shown in Fig. 2b. The direction, also an
independent variable, is subdivided into M solid angles,
where M represents the number of directions in the total
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Fig. 2. (a) Typical control volume centered at node P along with
neighboring nodes N and S. (b) Typical solid angles.
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polar angle c of p radians. In this case, because of symme-
try, the intensity is a function of only z and c, that is, for a
given (z, c), the intensity is same for all azimuthal angles /
from 0 to 2p.

3. Mathematical formulation

3.1. Forward problem

The equation governing the steady state temperature
distribution in vectorial notation can be given by

kr2T ¼ r � q00r ; ð1Þ

where the left-hand side represents the net conduction heat
transfer into a differential control volume, the right-hand
side gives the net radiation transfer leaving a differential
control volume and k, T and q00r represent the thermal con-
ductivity, temperature and radiant heat flux, respectively.
Integrating Eq. (1) over a typical control volume as shown
in Fig. 2aZ Z Z

v
ðkr2T Þdv ¼

Z Z Z
v
r � q00r dv; ð2Þ

Replacing $2 operator by o2

oz2 and on application of the
Gauss Divergence theorem to the right-hand side of Eq.
(2), we get

Z Z
A

k
o

2T
oz2

dz ¼
Z Z

As

q00r � �ndAs; ð3Þ

where ~n is the unit vector normal to the elemental surface
area dAs and dv = 1.1.dz = dz.
Expressing radiant heat flux in terms of intensity I in the
direction of~s contained in the elemental solid angle dx, Eq.
(3) becomes

Z Z
A

k
o

2T
oz2

dz ¼
Z Z Z

4pAs

Ið~s �~nÞdAsdx: ð4Þ

By applying the equation of radiation transfer, the right-
hand side of Eq. (4) becomes
Z

4p

Z Z
As

Ið~s �~nÞdAsdx ¼
Z

4p

Z Z
v
½�jI þ jIb�dvdx ð5Þ

¼ �4pjIavþ 4pjIbv; ð6Þ

where j is the absorption coefficient. In addition,

Ia ¼
1

4p

X
l

I lxl is the average intensity; ð7Þ

and Ib ¼ n2rT 4

p is the average black body intensity corre-
sponding to the temperature of the medium within the
control volume and n is the refractive index of the semi
transparent medium. The total solid angle of 4p is divided
into a discrete number of solid angle elements and the
average intensity in Eq. (7) is obtained as the weighted
average of the intensity within the discrete solid angle
elements x1.

Thus, Eq. (4) becomes

Z Z
A

k
o2T
oz2

dz ¼ �4pjIavþ 4pjIbv: ð8Þ

Dimensionless variables h ¼ T
T H

, Z ¼ z
L are introduced to

convert Eq. (8) into a dimensionless form given by

Z Z
A

o
2h

oZ2

� �
dZ ¼ ½jL�½4rT 3

HL=k� h4 � pIa

rT 4
H

� �
DZ; ð9Þ

where TH is the reference temperature, which in this case is
the hot wall temperature and L is the characteristic length
of the domain.

There are two unknowns in Eq. (9) namely temperature
and intensity. Hence, another equation is required to solve
the system of simultaneous equations, apart from the
boundary conditions. The required equation, describing
the change of intensity over a path length (The equation
of radiation transfer, RTE) can be written as

dI
ds
¼ �jI þ jIb; ð10Þ

where the first term on the right-hand side is the attenuation
through absorption and the second term is augmentation
due to emission. In the case of gray medium approximation,
the absorption coefficient. j is a wavelength averaged
quantity. The left-hand side represents the rate of change
of intensity.

Integrating Eq. (10) over the control volume and xl and
approximating all the variables on the right-hand side to be
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constant at the nodal value while carrying out the volume
integration, results in

Xno: of control panels

f¼1

As;f

Z
xl

I f ð~s �~nf Þdx

¼ ½�jIl
P þ jIl

b;P �vP xl; ð11Þ

where the surfaces of control volume are divided into f con-
trol panels. As, f represents the surface area of each control
panel and the intensity and the unit normal to the surface
have been approximated as integration point f, which is the
central point of the control volume.

The determination of If is similar to that proposed by
Raithby and Chui [6]. The value of If is found by tracing
back along the path taken by the ray in reaching f along
the �~s direction until a location is reached at which the
intensity can be obtained by interpolation between nodal
values. The interpolation point is designated as uf. Integra-
tion of Eq. (11) over a path length is performed to estimate
the value of If in terms of Iuf. Hence

If ¼ Iuf e�jf s þ Ib;f ð1� e�js
f Þ �

oIb

oS

� �
f

jf
½1� e�jf sð1þ jf SÞ�

ð12Þ
Substitution of Eq. (12) into Eq. (11) results in the expres-
sion of heat transfer across all the control panels within xl

in terms of Iuf, Ib,f. The value of Ib, f is obtained by a linear
interpolation using neighboring nodal values.

3.2. Inverse problem

In this study, the inverse analysis for the combined
mode heat transfer in the geometry given for parameter
estimation is carried out for three cases:

(a) The boundary property, i.e. emissivity e of the walls
(single parameter estimation),

(b) The thermal properties of medium, i.e. Conduction–
radiation parameter NCR and optical thickness s
(two parameter estimation), and

(c) Simultaneously thermal properties NCR and s and
boundary property e (three parameter estimation).

The parameters, to be estimated, are regarded as
unknown while the measured temperature profile at a set
of discrete points is available. The problem can be solved
by minimization of objective function R which is expressed
by the sum of square of residuals between estimated and
measured temperatures, as shown below

R ¼
Xno: of nodes

1

½T estimated � T measured�2 ð13Þ

where Testimated is the estimated temperature with the
parameters (e, NCR and s) and Tmeasured the ‘‘measured”

temperature at each node. The minimization procedure is
performed using genetic algorithms.
4. Solution procedure

4.1. Forward problem

For all the inner control volumes, the first derivative is
approximated by second order accurate central difference
expressions and on substitution in Eq. (9), the following
equation is obtained.

ðhN þ hS � 2hPÞ
DZ

¼ ½jL� 4rT 3
H

k

� �
h4

P �
pIa

rT 4
H

� �
DZ ð14Þ

The above equation is valid for the inner control volumes.
For the boundary control volumes, the walls happen to be
one of the faces and hence the first order derivative is ob-
tained using second order accurate forward or backward
difference expressions.

Eq. (14) is non-linear in h and is linearised by using the
relation

h4 ¼ 4h3
khkþ1 � 3h4

k ð15Þ

where k, k + 1 denote, respectively, the old and new iter-
ates. Linearization helps in reducing Eq. (14) to a set of
linear equations, which may be solved easily.

Substituting Eq. (15) in Eq. (14), we have

hP ¼
ðhNþhSÞ
DZ2s2 N CR þ pIa

rT 4
H

þ 3h4
Pold

� 	

4h3
Pold þ

2NCR

DZ2s2

� 	 ð16Þ

where NCR is the Conduction–Radiation parameter NCR ¼
kj

4rT 3
h

and s = jL. First, a temperature distribution is
assumed and the radiative transfer equation [Eq. (10)]
is solved to obtain new set of intensities and average
intensities at each node. Eq. (16) is used to find the new
non-dimensional temperatures at each node. The cycle is
repeated until convergence is reached. The convergence
criterion for the energy equation that has been employed
here is the norm of the error between the temperatures
value of any successive iteration should be less than 10�10.

Norm ¼
Xn

i¼1

ðhinew � hioldÞ2 ¼ 10�10 ð17Þ
4.2. Inverse problem

Before estimating the parameters of the system, we need
experimental measurements from the system. However, for
this study, the direct problem is solved with known param-
eters to obtain numerical solutions and these were used as
the experimental measurements, with or without adding
small random perturbations. The effect of measurement
errors are taken into account with these random perturba-
tions, as in the following equation:

T measured ¼ T exact þR ð18Þ

where R is a random error between ±5.0. The perturbations
are chosen such that at their highest levels, they represent an
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approximately 1% error with respect to the mean tempera-
ture (450 K in this study). Once the experimental values of
temperature profiles are simulated, the method proceeds
under an initial assumption of some values of parameters
(to be estimated) and then obtaining the temperature profile
by solving the direct problem. The sum of the squares of the
residuals between the estimated and measured temperatures
is then obtained with Eq. (13). Genetic Algorithms is used
to solve the minimization problem.

Genetic algorithms mimic the process of evaluation and
hence typically work for maximization problems. Even so,
the conversion of a minimization problem to maximization
is straight forward as is shown below

F ¼ 1=ð1þ RÞ ð19Þ

F is objective function of the optimization procedure and in
the parlance of GA, is known as fitness function.

GA uses the values of the parameters (to be estimated)
from the given range. Variables are first coded in binary
strings. The length of the string is usually determined
according to the desired accuracy. Thereafter, the fitness
function values are calculated by substituting the variables
in fitness function (Eq. (19)). After this, the population is
operated upon by three main operators namely reproduc-
tion, crossover and mutation-to create a new population
of points. The operation reproduction refers to the selection
of the mating pool, so that ‘‘fit parents” alone produce
‘‘children”. This is again done based on probabilistic rules
combined with the fitness function. Crossover refers to the
process of exchanging genetic material between ‘‘parents”.
Several types of crossover are reported in GA literature.
In this study, we have employed uniform crossover, wherein
the decision to exchange bits is based on the probability of
crossover. This has been set to 0.5 in this study. This proce-
dure is continued until the termination criterion is met.
Details of executing an optimization with GA is available
in a number of references (see for example Goldberg [7]).
5. Results and discussion

5.1. Validation and grid dependence study

The results of the present study are validated against the
exact results of [8] for the case of one-dimensional radiative
Table 1
Non-dimensional heat flux for the case of radiative equilibrium between two

Optical
thickness s

Non-dimensional heat flux �q* = q/r (T 4
H � T 4

C)

Coarse grid
(4 � 10)

Intermediate grid
(10 � 20)

Fine grid
(20 � 42)

0.0 1.0000 1.0000 1.00000
0.1 0.9128 0.9145 0.91537
0.5 0.6979 0.7027 0.70384
1.0 0.5484 0.5521 0.55311
2.0 0.3874 0.3891 0.38984
5.0 0.2078 0.2074 0.20759

10.0 0.1173 0.1168 0.11678
equilibrium between two parallel, isothermal, diffuse plates
enclosing a gray isotropically scattering medium. For pur-
poses of validation, isotropic scattering was included in the
governing equations. The results are obtained for three grid
sizes (4 � 10), (10 � 20) and (20 � 42) and are tabulated in
Table 1. It is observed that results predicted by intermedi-
ate (10 � 20) and the fine grid (20 � 42) are in good agree-
ment with the exact solution, and the maximum error in the
fine grid is �0.036%. Therefore, for all the further calcula-
tions, a grid size of 20 � 42 is used where the number of
control volume in z-direction is 20 and the number of direc-
tions is 42. Results to be presented henceforth correspond
to the case of no scattering.
5.2. Forward problem

The effect of conduction–radiation parameter and emis-
sivity on non-dimensional temperature is shown in Fig. 3a
and b, respectively. Temperature profiles for the case
NCR = 1 are very similar to temperature profiles for pure
conduction which are straight lines. Thus, for large values
of parameter NCR, the differences between temperature
profiles for pure conduction and simultaneous conduction
and radiation are small. However, as the parameter NCR

is decreased, the differences are seen to increase. Since the
system under consideration is in steady state, the total heat
flux, (conduction plus radiation) across the medium is
constant. To ensure this, it is necessary for the variation
in energy flux by conduction to be compensated by varia-
tion in the radiative fluxes. It is observed from Fig. 3b that
as the wall emissivities decrease, in other words, as the
boundaries become more and more reflecting, the variation
of h values increases in the vicinity of the cold surfaces.
Similar trends have been observed by Viskanta and Grosh
[9,10].
5.3. Inverse problem

The direct or forward problem is solved for an optical
thickness s = 5, conduction–radiation parameter NCR = 1
and emissivities of both walls e = 0.7. The cold wall is at
a temperature of hC = 0.5 and the distance between the
two plates L = 1 m. The temperature distribution obtained
is taken as the ‘‘measured” temperature profile. In this
isothermal, diffuse, infinitely long parallel plates

Percentage error with respect to exact results

Exact results ([8]) (4 � 10) (10 � 20) (20 � 42)

1.0000 0.0 0.0 0.0
0.9157 �0.3 �0.13 �0.036
0.7040 �0.86 �0.18 �0.023
0.5532 �0.87 �0.2 �0.016
0.3900 �0.67 �0.23 �0.04
0.2076 0.096 �0.096 0
0.1167 0.514 0.085 �0.06
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Fig. 3. (a) Variation of non-dimensional temperature h with non-
dimensional optical thickness for hC = 0.5 and sL = 1.0. (b) Effect on
emissivity on non-dimensional temp profile for optical thickness sL = 1,
hC = TC/TH = 0.5 and NCR = 0.01.

Table 2
Errors in the estimation of boundary emissivity with and without
perturbation

Perturbation True values Estimated values % Error

0 0.7 0.7 0
±0.01 0.7 0.699 �0.01
±0.1 0.7 0.700 0.05
±0.5 0.7 0.701 0.26
±1.0 0.7 0.703 0.52
±5.0 0.7 0.718 2.68

Table 3
Errors in the simultaneous estimation of s and NCR with and without
‘‘measurement errors” (first column indicates perturbation in temperatures
in �C)

s NCR

Actual values

5 1

Estimated values without perturbation

5 1

Estimated values with perturbation

±0.01 5.0021 1
±0. 1 5.0000 1.0001
±0.5 4.9791 1.0021
±1.0 4.9602 1.0043
±5.0 4.6338 0.9795

Percent error without perturbation

0 0

Percent error with perturbation

±0.01 0.043 0.000
±0.1 0.000 0.010
±0.5 �0.418 0.215
±1.0 �0.795 0.431
±5.0 �7.324 2.049
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section, we present the numerical results to demonstrate the
use of genetic algorithms for the estimation of the pertinent
parameters from a knowledge of the measured temperature
profiles. In order to simulate the measured temperature
profile with measurement errors, small random perturba-
tions are added to the numerical solution of direct
problem.

For the GA, the maximum number of generations is
taken as 100. The population in each generation is also
100. The string length is 32 bits for the variable and muta-
tion rate is 0.02.

5.3.1. Estimation of boundary emissivity e
For estimating the boundary emissivity, the optical

thickness s and the conduction–radiation parameter NCR

are fixed at 5.0 and 1.0, respectively. The value of NCR
has been chosen on purpose so that one has comparable
contributions from radiation and conduction. Minimiza-
tion of the residual temperature function is done by using
GA as explained before. The estimated values of wall emis-
sivity with different values of R are also listed in Table 2. It
is observed that estimation of boundary emissivity e (one
parameter estimation) is quite accurate even with noisy
data.

5.3.2. Estimation of thermal properties of medium NCR and s
In this section, the results of two parameter estimation,

namely simultaneous estimation of the optical thickness s
and the conduction–radiation parameter NCR is presented.
Here, other parameters are kept constant at the values
described in the earlier section. The results of the analysis
are tabulated in Table 3 and it can be seen from the results
that the accuracy in the estimation of s is more sensitive to
‘‘measurement” errors than that of NCR. The variation of
residual temperature function at each generation is shown
in Fig. 4. It is observed that with exact ‘‘measured” temper-
ature profile the residual converges to value of 10�5 in less
than 40 generations only. As the perturbation increases the



Fig. 4. Best value of the fitness function at each generation with
perturbation level of 0, ±0.01, ±0.1, ±0.5, ±1.0, ±5.0.

Table 4
Simultaneous estimation of NCR, s and e without any perturbation

Run Range s NCR e

1 s (0–50) 9.28884 3.43880 0.4541
e (0–1)
NCR (0–15)

2 s (0–15) 6.55848 1.71897 0.5856
e (0–1)
NCR (0–10)

3 s (1–10) 4.447164 0.790571 0.7519
e (0.5–1)
NCR (0.1–3)

4 s (3–6) 5.272892 1.112362 0.6768
e (0.5–1)
NCR (0.5–5)

5 s (4.5–6) 5.95689 1.418317 0.6249
e (0.5–0.8)
NCR (0.5–2)

6 s (4.5–5.5) 5.343597 1.142136 0.6711
e (0.5–0.8)
NCR (0.5–2)

7 s (0.5–1.5) 4.914055 0.965846 0.7076
e (0.6–0.75)
NCR (0.5–1.5)

Avg – 5.1768 1.073448 0.6852
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residual value increases but there is no significant changes
in the residual values after 50 generations.

5.3.3. Simultaneous estimation of properties of medium NCR

and s and boundary property e
The results for the simultaneous estimation of three

parameters NCR, s and e from the measured temperature
distribution is discussed in this section. Table 4 shows the
estimated values of the parameters for seven different sets
of ranges. This estimation is done from the exact tempera-
ture profile obtained from numerical solution of the
forward problem for NCR = 1, s = 5 and e = 0.7.

It can be seen from the results that the solution is not
unique even for the exact measured temperature distribu-
tion, i.e. without perturbation of data. Different combina-
tions of parameters are obtained for different set of range.
It is observed that while constricting the range for the
parameters while applying GAs for the inverse problem,
we can get a combination of parameters which gives the
least residual value. The average of three best runs is also
given in Table 4.

Fig. 5a and b show the process of convergence of
parameters for three different runs that correspond to the
actual measured temperature profile. P, Q and R represent
s, NCR and e, respectively. 1, 2 and 3 correspond to three
different runs. It may be seen, that for the Run3 (i.e. P3,
Residual temp Percentage error

s NCR e

3 0.14818 – – –

1 0.02950 – – –

6 0.00534 �11.06 �20.9 7.4

4 0.00109 5.46 11.2 �3.31

34 0.012815 19.3 41.8 �10.7

13 0.001833 6.87 14.2 �4.12

19 0.000113 �1.7 �3.4 1.08

– 3.5 7.3 �2.1



Fig. 5. (a) and (b) Simultaneous estimation of optical thickness, conduc-
tion–radiation parameter and the emissivity of wall, by inverse analysis
without perturbation, P, Q and R represents s, NCR and e, respectively,
and three different runs are represented by 1, 2 and 3.
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Fig. 6. (a) and (b) Simultaneous estimation of optical thickness, conduc-
tion–radiation parameter and the emissivity of wall, by inverse analysis
with perturbation = ±0.5, P, Q and R represents s, NCR and e,
respectively, and three different runs are represented by 1, 2 and 3.
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Q3 and R3), the value of the objective function is less
than 1 � 10�3. Run3 corresponds to the 7th set of data
in Table 4.

Fig. 6a and b show the convergence of the parameters
NCR, s, e from the measured temperature profile for a
perturbation level of ±0.5, for three different runs. In
Run1, s varies from 0 to 50, NCR varies from 0 to 15 and
e varies from 0 to 1. In Run2, s varies from 0 to 20, NCR

varies from 0 to 10 and e varies from 0 to 1 and in Run3,
s varies from 4.5 to 5.5, NCR varies from 0.5 to 1.5 and e
varies from 0.6 to 0.75. In this case, different combinations
of data give almost the same residual values of the temper-
ature. More so, even after constricting the range of para-
meters there is no significant improvement in the
objective function. Thus one can conclude that for estima-
tion of more than two parameters by applying a simple
GA, there is fat little chance of getting the estimated values,
unless one has a fair idea of the range in which the para-
meters should lie.
For the range corresponding to Run3 mentioned above,
the results for the simultaneous estimation of s, NCR and e,
with and without perturbation levels are listed in Table 5.
Within this constricted range of parameters too, the per-
centage error with a higher perturbation level is quite
appreciable.

6. Conclusions

A numerical analysis of the forward and the inverse
problem is carried out in this study. The following conclu-
sions are arrived at:



Table 5
Errors in the simultaneous estimation of NCR, s and e within the
constructed range, with ‘‘experimental errors”

NCR s e

Actual values
1 5 0.7

Estimated values without perturbation
0.9658 4.9141 0.7076

Estimated values with perturbation
±0.1 1.032236 5.072968 0.69291
±0.5 0.910324 4.737227 0.71978
±1.0 1.187499 5.372335 0.66116
±5.0 0.950673 4.535512 0.72593

Percent error without perturbation
�3.42 �1.71 0.37

Percent error with perturbation
±0.1 3.22 1.46 �1.01
±0.5 �8.96 �5.25 2.83
±1.0 18.75 7.45 �5.55
±5.0 �4.94 �9.29 3.71
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(1) The existence of a thermal boundary layer near the
walls is observed for the low values of NCR and e.

(2) For the ‘‘inverse problem” one parameter (e) estima-
tion and two parameters (NCR and s) estimation is
quite accurate even with noisy data. For simulta-
neous estimation of NCR and s, the error in estima-
tion of s is more than that of NCR.

(3) For simultaneous estimation of more than two
parameters genetic algorithms is not very efficient
unless there is a fair idea of ranges in which the
parameters may lie. The solutions obtained are not
always unique.

(4) In case of simultaneous estimation of NCR, s and e
without any measurement errors, nearly accurate val-
ues of the parameters are obtained by constricting the
range of parameters in the search process. This
reduces the value of objective function and finally
more fine tuned parametric values are obtained.
(5) However, for the above mentioned case, with noisy
data, the objective function values, obtained for
different combinations of parameters, are almost
the same. This then reduces any chances of adopt-
ing any other means to obtain more accurate
solutions.

(6) For three parameter estimation, even with very con-
stricted initial ranges of the parameters, the errors
in the estimated values of the parameters are quite
high whenever the input data is noisy. This is coun-
ter-intuitive as GA is generally considered to be a
highly robust optimization technique.
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